Relatively Free Nilpotent Torsion-Free Groups and Their Lie Algebras
نویسندگان
چکیده
منابع مشابه
On Torsion-free Abelian Groups and Lie Algebras
It is known that many of the classes of simple Lie algebras of prime characteristic of nonclassical type have simple infinite-dimensional analogues of characteristic zero (see, for example, [4, p. 518]). We consider here analogues of those algebras which are defined by a modification of the definition of a group algebra. Thus we consider analogues of the Zassenhaus algebras as generalized by Al...
متن کاملModels for Free Nilpotent Lie Algebras
If a Lie algebra g can be generated by M of its elements E1, . . . , EM , and if any other Lie algebra generated by M other elements F1, . . . , FM is a homomorphic image of g under the map Ei → Fi, we say that it is the free Lie algebra on M generators. The free nilpotent Lie algebra gM,r on M generators of rank r is the quotient of the free Lie algebra by the ideal gr+1 generated as follows: ...
متن کاملIdeals and primitive elements of some relatively free Lie algebras
Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a prim...
متن کاملFree Subalgebras of Lie Algebras Close to Nilpotent
We prove that for every automata algebra of exponential growth, the associated Lie algebra contains a free subalgebra. For n ≥ 1, let Ln+2 be a Lie algebra with generator set x1, . . . , xn+2 and the following relations: for k ≤ n, any commutator of length k which consists of fewer than k different symbols from {x1, . . . , xn+2} is zero. As an application of this result about automata algebras...
متن کاملThe isomorphism problem for residually torsion-free nilpotent groups
Both the conjugacy and isomorphism problems for finitely generated nilpotent groups are recursively solvable. In some recent work, the first author, with a tiny modification of work in the second author’s thesis, proved that the conjugacy problem for finitely presented, residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algorithmic picture by proving that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2011
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927871003601667